The sensor responds to low-frequency (1 to 15 Hz) flickering IR radiation emitted from flames during combustion.

IR flame flicker techniques enable the sensor to operate through a layer of oil, dust, water vapour, or ice.

Most IR flame sensors respond to 4.3μm light, emitted by hydrocarbon flames. By responding to 1.0 to 2.7μm light emissions from fires almost all flickering flames can be detected. Gas fires not visible to the naked eye e.g. hydrogen may also be detected.

The triple IR photoelectric detectors (IR³), responding to neighbouring IR wavelengths, enable it to discriminate between flames and spurious sources of IR radiation.

The combination of filters and signal processing allows the sensor to be used with a very low risk of false alarms in difficult situations characterised by factors such as flickering sunlight.

The sensor responds to varying sizes of flame at given distances. The further away the flame is from the sensor the larger the fire has to be, with detection beyond 50m becoming unpredictable. An n-heptane flame with a base area of 0.1m² will be detected on the sensor centre line at 25m, with the sensitivity set high for class 1 performance.

If the sensitivity switch were set to low, for class 3 performance, the same 0.1m² flame would be detected at 12m.

Features

- Class 1 Sensitivity to EN54-10 Detects 0.1m² fire @ 25m
- Excellent Optical Interference Immunity
- Selectable Output Options Conventional 2 wire 4-20mA Latching or Non-latching Relay Contacts; Fire/Fault, Pre-alarm
- Selectable Response Speed
- Optical Self Test
- Low Power Consumption
- LPCB & CPD Approved to EN54-10

Specification

<table>
<thead>
<tr>
<th>Housing Material:</th>
<th>Die Cast Zinc Alloy (ZA12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing Colour:</td>
<td>Blue</td>
</tr>
<tr>
<td>Dimensions (W, H, D):</td>
<td>108mm x 74mm x 82mm</td>
</tr>
<tr>
<td>Weight:</td>
<td>2kg</td>
</tr>
</tbody>
</table>
Cable Gland Entries: 2 x 20mm
Supply Voltage: 14 to 30Vdc
Supply Current: See DIL switch settings
Power Up Time: 2 seconds max.
Test Signal Voltage: 14 to 30Vdc
Relay Contact Ratings: 1.0Amp. Max.
Current Voltage
50Vdc. Max.
30W Max.
Range: - Class 1
(Resistive Loads Only Power
Sensitivity Setting - Class 3
see EN54-10)
0.1m² n-heptane at 25m
0.1m² n-heptane at 12m
Field of View: 90° min. Cone
Operating Wavelength Band: IR 0.75 to 2.7μm
Sensitivity: High = Class 1
(See note 2)
Low = Class 3
Operating Temperature: -10°C to +55°C
Storage Temperature: -20°C to +65°C
Relative Humidity: 95% Non condensing
IP Rating: IP65
EMC Immunity / Emissions: EN61000-6-1, EN61000-6-2
EN61000-6-3, EN61000-6-4
EN 50130-4, EN 55022
Approval: EN54-10
729a/01
CPD Certificate No: 0832-CPD-0595

Order Codes and Options

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>016589:</td>
<td>IR³ FLAME SENSOR</td>
</tr>
<tr>
<td>007127:</td>
<td>STAINLESS STEEL ADJUSTABLE MOUNT</td>
</tr>
</tbody>
</table>

Electrical Connections

The sensor can be connected to a two-wire circuit supplying 14V to 30V dc. The sensor is connected to the supply via terminals 1(+IN) and 2(-IN) under the front terminal cover. Connections to the sensor are polarity sensitive.

A remote sensor optical test input is available on terminals 3(+R) for +IN and 4(-R) 0V. When a 14V to 30V dc supply is applied to this input IR test sources activate within the sensor and a flame-detected state will be outputted. See Fig. 1.

Flame Detection Characteristics

The sensor responds to varying sizes of flame at given distances. The further away the flame is from the sensor the larger the fire has to be, with detection beyond 50m becoming unpredictable. An n-heptane flame with a base area of 0.1m² will be detected on the sensor centre line at 25m, with the sensitivity set high for class 1 performance.

If the sensitivity switch were set to low, for class 3 performance, the same 0.1m² flame would be detected at 12m.
To meet the requirements of EN54:10 clause 5.1.2, all testing has been performed at the highest sensitivity (class1) setting. The polar diagram shows that the sensor sensitivity is at its greatest along the central axis. The variation in relative range against viewing angle is shown as a percentage of peak performance. The diagram is a section through the sensor's conical field of view.

Alarm Current Output Values

When the sensor detects a flame the sensor supply current value (4-20mA or 8-28mA) will increase.

The sensor is shipped with the internal DIL switch (5) set to give a latching alarm current. Normally the current required by the sensor is 4mA or 8mA at 24Vdc with no flame in view. When a flame is in view, the supply current value will increase to 20mA or 28mA, the fire relay RL1 will energise and red fire LED will illuminate.

The supply to the sensor has to be broken in order to reset the sensor. Values below 3.0mA are an indication of a fault condition.
Proportional Output Values (Non-Latching)

When the sensor sees any flame flicker the proportional values of (4-20mA or 8-20mA) will increase.

The sensor is set to give a proportional value of 4mA or 8mA with no flame in view. The value increments when flame flicker pulses are seen. With an output value approaching 20mA the fire LED will illuminate.

Values below 3.0mA are an indication of a fault conditions.
Once illuminated the red Fire LED and output value are held for 5 seconds after the last flame has been seen, after which the output value decrements back to 4 or 8mA.

Proportional output values between 4 or 8mA and 20mA can be used to provide an early warning of fire. These values hold only for 3 seconds from the last flame sighting.
Fig. 7 Typical Response to Burst of Flame
- IR⁳ Flame Sensor